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ON INERTIAL EFFECTS ON DISCONTINUITIES IN THE CONCENTRATION OF THE 
SOLID PHASE IN A DISPERSE MEDIUM* 

N.N. BOBKOV and YU.P. GUPALO 

A system of conditions for the conservation of massandmomentum of a 
fluid and a solid phase on the surface of discontinuity in a disperse 

medium is analysed within the framework of the double continuum model /l/. 

The case when there is a high concentration of solid particles on one 

side of the discontinuity and a low or zero concentration of them on the 

other side is considered. Under these conditions in the region of a 
high concentration of the solid phase remote from the discontinuity, the 

inertial force of the fluid phase is small compared with the interphase 
interaction force and Darcy's law holds while both forces are of the 
same order of magnitude in the thin transition lower close to the surface 
of discontinuity. It is assumed that the surface of discontinuity is 
impermeable to the particles of the solid phase. Effects due to the 
possible occurrence of surface tension on the discontinuity are not 
considered. 

Subject to the assumptions which have been made, a solution of the 
initial system of equations of motion and continuity of the phases is 
constructed in the stationary approximation taking account of the 

transition layer which satisfies the condition of the continuity of the 
--- ----------I_- 
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pressure and the velocity of the fluidizinq agent on the boundaries of 
the layer. Replacement of the transition layer by a discontinuity leads 
to a jumpwise change in the above-mentioned parameters upon crossing the 
discontinuity which, in the case being considered, necessitates a 
modification of the whole system of boundary conditions on the surface of 
discontinuity /l-3/. Examples of the construction of the flow fields of 
the fluid and solid phases during the motion of a local inhomogeneity in 
the concentration of the particles in the pseudofluidized layer are 
presented. 

Inertial (dynamic) effects on the discontinuities during the slow 
filtration of a gas in porous media have been considered previously /4, 5/ 
The inertialess model of a fluidizing agent has been used (6, 7/, etc.) 
to analyse the motion of bubbles in a pseudofluidized bed. 

1. Formulation of the problem. In the continuum approximation a fluidizing agent 
and a collection of solid particles are phenomenologically modelled by two mutually permeable 
interacting continuous media (a fluid phase and a solid phase respectively). For simplicity, 
let us assume that they possess the properties of a ideal fluid and that the viscosity of the 
fluidizing agent is only manifested on a microlevel and, after the averaging procedure, only 
occurs in the initial equations in a term which describes the interaction between the phases. 
We assume that the densities rll and d, of the fluidizing aqent and the particles are constant. 
Then, the locally averaged equations for the conservation of momentum and mass of the fluid 
and solid phases can be written in the form /8/ 

dts [ & + (“V)] ” = - vp, + dreg - f, -$ + v (EV) = 0 

Q [-g + (w-q j w = - VP, + a,!% + f, gj-T(pw)=O 
(1.1) 

E -I- p = 1, @ (p,, p, . . . ) = 0 

Here v and w are velocities, P, and p,*are the pressures of the fluid and solid phases, 

P is the concentration of the solid phase (8 is the porosity of the system) and g is the 
accelerationdueto an external mass force (gravitational force). The last of the equation in 
(1.1) is the "equation of state" of the solid phase. 

We take the two-term expression 

r=-$?p,--ppw-v)F(Iw-v/,p) (1.2) 

for the force due to the interaction between the phase f. In particular, this expression 
holds in the case of a suspension of particles in a gas when dffd, ((1. In doing this, the 
effects of the connected masses are not taken into account while the second term in (1.2) is 
the inperphase frictional force without any allowance for the Besset force. 

Let us assume that the distribution of the concentration of the solid phase P =p(r,t) 
changes in a jumpwise manner on crossing a certain surface which approximates a thin transition 
layer A in which the Farameters of the system undergo a sharp change. 

Let us now introduce a rectangular coordinate system syz associated with an infinitely 
small planar element of the surface of discontinuity where z is measured alonq the normal to 
the surface, and agree to mark with a dash values which refer to the flow region ~(0. We 
shall denote the jump in any parameter on passing from the region z>O to the region z< 0 
by square brackets. 

Let us write the system of boundam? conditions on the discontinuity which has been 
obtained previously /l-3/ from the integral equations for the mass and momentum balances for 
the fluid and solid phases in the surface of discontinuit:? encompassed by an elementary volume 
on passing to the limit as A-O in the form 

2. = 0, [e&l = 0, [PC,1 = 0 
EC, [vx] = 0, pwi [w] = 0, [p! + %d/~r*] = 0 

b, + Ps i +cz2 + d,pwz2] = 0 ([L] = 5’ - 5) 

(1.3) 

(vi and ui, are the components of the velocities of the phases which are tangential to the 
surface of discontinuity). 

The system of analogous conditions in the inertialess fluid phase model (df= 0) has the 
form 

Z = 0, [6X& = 0, [pw,] = 0, I)WI [w,] = 0 (2.41 

[!-),I = 0, IP,+ P, + dSPC,Zl = 0 

Conditions (1.3) and (1.4) hold for a planar discontinuity and also for an element of 
the surface of discontinuity of arbitrary curvature when there is no surface tension. 
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The fact that, in system (1.41, there is no boundary condition on the tanqential component 
of the velocity of the fluid phase is associated with the elimination of the convective term 
with the highest (in the given case, first) derivative of the velocity in the inertialess 
approximation. On account of the smallness of the inertial term outside the transition layer 
of thickness A which is adjacent to the discontinuity, the third condition (1.3) (obtained 

when A -0) may be considered as the condition for the continuity of the tangential component 
of the velocity of the fluid on the boundaries of the transition layer. 

The system of conditions (1.3) and (1.4) must be augmented by considerations concerninq 
the nature of the discontinuity. 

Let us confine ourselves to the treatment of discontinuities of fixed form in the disperse 
system with a concentration distribution of the solid phase which is constant in time (in 
the coordinate system associated with the discontinuity). At larae distances from the dis- 
continuity z=o, the system is homogeneous with a concentration of particles p when z>O 
and p' when z<O. A similar condition was assumed to hold /6/ in the analysis of the motion 
of a single gas bubble in a pseu'dofluidized layer and corresponds to the simplest "equation 
of state" of a solid phase in the form p = const. 

We will approximate the interaction force between the phases by an expression which is 
linear with respect to the velocit 17 of relative motion of the particles andthe fluid. In this 
case the function P(lw- v 1,~) in formula (1.21, subject to all the particles being identical 
and of spherical form, can be represented in the form /8/ 

F (1~ - v 1, pf = F (p) = K (p)ro-% ,G.3) 

K (p)=(1 - p)+, TO =Z/sa,ay/v,, y = d,/d, > 1 

(Q is the relaxation time of the velocity of particles of radius aP in a current of gas with 
a coefficient of kinematic viscosity vt). The motion of the phases is assumed tobea stationary 
in the coordinate system associated with the discontinuity. 

Let us now write down the stationary equations of motion and the equations of continuity 
of the phases in dimensionless form (retaining the previous notation for the dimensionless 
quantities). In order to do this, we introduce the following parametric scales for the biphasic 
flow: u. and U, are the velocities of the fluid and solid phases, 1 are lengths, J and 2' 
are the pressure gradients of the fluid phase in the regions z>o and z< 0 and P and P’ 
are the pressures of the disperse phase in the regions z>O and 2 < 0. 

For example, in the case of a pseudofluidized layer, c0 is the velocity of pseudo- 
fluidization in the region of the homoqeneous layer remote from the discontinuity /a/: VO = 

UO (P) = (1 -PI 4L? IF (PP', V, is the velocity of propaqation of the discontinuity in the layer 
which, in the case of the motion of a bubble, for example, is equal to its velocity of ascent 
in the layer, J is the weight of a unit volume of the layer in the region 8 > 0: J = (df" i C&p) g 
(and, respectively, J' = (C$E + &I') g when z co). In the problem of the motion of a gaseous 
piston in an apparatus with a fluidized bed, the diameter of the apparatus or the local radius 
of curvature of the surface of discontinuity may be taken as the linear scale 1 , whil&in the 
problem of the motion of a bubble or packet in a boundaryless psuedofluidized bed one may 
take the correspondinq characteristic size of the reqion of inhomogeneity. 

In the stationary approximation and dimensionless variables, Eqs.tl.1) take the form 

z > 0, Ar*(vV)v = -(I-1 + 1)Vpf + (yp)-1 i, + SW - v (1.6) 
Fr*(wV)w= - P,VP,~ -(fp~-l + y-l) Vpt -t e-l& - 6w + v 
Vv=O, Vw=O, p=const 
z<O, Ar~'(v'V)v' = --O1(~'(yp‘)-l + 1)Vp,' + o,(yp’)-‘i, -- 

&’ - VI 
t 

Fr*'(w'V)w'= - P,'Vp,'-~SP(p'+ e'y.-l)Vp, + 
o,eT, - &w’ + v’ 

Cv’ = 0, VW'= 0, p'=const, i, =g/g 

The dimensionless parameters are related to the parameters 
following manner: 

of the disperse system in the 

(1.7) 

Fr* = _.?___ 
gl (I- P) ’ (1.8) 

(1.9) P 
P,=----, 

dJ& 
p,’ = p’wq 

T$3-’ 
*=Li” 

GO 
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Here, Ar*, Ar*‘, Fr* and Fr*' are modified Archimedes' and Froude numbers in the regions 

z>O and z < 0, Ar is the Archimedes' number. 

2. Analysis of the boundary conditions. Model of the disperse phase. We shall 
analyse the general conditions of conservation (1.3) on the concentration discontinuity in the 

pseudofluidized layer on the basis of the dimensionless equations of motion (1.6) and 

relationships (1.7)-(1.9). In accordance with the statements in Sect.1, we shall confine 
ourselves to the treatment of the case when the bulk concentration of the solid particles on 

one side of the discontinuity is small and that on the other side is large. At the same time 
we assume a concentration of particles in the region of the rarified layer which is so small 

that the inertial force of the fluid phase and the interaction force between the two phases 

in this region are of the same order of magnitude. To be specific, let p’Q1 in the region 

z<O and let the layer be dense in the region .z > 0 so that ~~0.5. The modified 
Archimedean criteria Ar* and AI*' which occur in the dimensionless equations for the con- 
servation of momentum of the fluid phase characteristize the relative contribution of the 

inertial terms compared with the forces arising from the interaction between the phases. It 

follows from physical considerations that, as the concentration of the disperse phase 
decreases in one of the regions of flow, the inertia of the fluid phase becomes substantial 

and influences the formation of the structure of the flows of the phases in the region under 

consideration. We note that, also, the contribution of the inertial term cannot be neglected 
in the limiting case when there are no solid particles along one of the sides of the dis- 

continuity such as, for example, in the analysis of the flow field within bubbles in a pseudo- 

fluidized bed. 
Let us now estimate the dimensionless parameters in Eqs.ll.6) on the basis of the following 

model representations regarding the disperse particles of the pseudofluidized layer. We 
shall assume that the particles are fairly fine: a,/1 -= h< 1 (which corresponds to the 

continuum approach), that they are heavy: y> 1, and that the velocity of pseudofluidization 

of particles with such proporties is finite. We will write down the last condition, taking 
account of the relationship for the velocity of pseudofluidization (Sect.11 and allowing for 

the fact that U, - (gl)'i* /E-lo/ in the form 

Together with the assumptions that h<1,y>l, we assume that G,>l (G*=105--IO? 

in real systems). Together with the small parameters h, v-l and G,-', we shall consider 

the concentration of particles p'in the regionofthe rarified layer z < Oas the fourth independent 

small parameter of the problem. The assumption which has been made in this model concerning 

the linearity of the interaction between the phases (which corresponds to small Reynolds 

numbers Re, for an individual solid particle) remains approximately valid up to extremely 

high values of the Archimedes' number: the constraint Ar< 20p-"/~~102- 103, p 20.3 (pseudo- 

fluidization in the dense layer) corresponds to the condition Re,,= 2a,u,(p)/v,& 1 /8, ll/. 

On account of this, we put Ar - hem>>, where O<m<l (in the case when m = 0 Ar - 1). 

On the basis of relationships (1.7) and (2.11, we have Ar=8G,h3y-G’iz,h- A-“‘. This condition 
provides a link between the parameters G, and k in the form G,- h-?("'+l). 

In the region with a low concentration of the solid phase, where the inertial force and 

the force due to interaction between the phases are, according to the assumption, quantities 

of the same order of magnitude, themodified Archimedes' number Ar*‘- 1. Using the second 

equality of (1.7) we obtain an expression for the parameter Ar*' in the region .z< 0 when 

p’<=l in the form Ar*' - G,yh"lp'- 1. The relationship between the parameters p' and h: 
p' _ h1-m follows from the latter expression. 

Next, we shall have 

0 -1,1-m 61, o,,~ - 1, Ar* -hl-m((l 

Y{‘-?.=‘>,1, yp’-1 

At the same time, we obtain 

x _ p-".5L - J" < 1, x’ - p’-‘id _ hWT2)/3 < 1 

for the dimensionless interparticle distances x and x' in the regions z>u and z<O 

respectively. 
Hence, in the case of the type of discontinuities beinq considered, the problem of 

determining the flow field of the fluid phase in the region of the dense layer is characterized 

by the fact that the initial equation of motion of the gas contains the small parameter 

Ar* - Al-"' accompanyinq the highest derivative of the velocity. Hence, in the dense layer 

remote from the discontinuity (on length scales comparable with 1). the inertia of the gas 

is negligibly small compared with the friction between the phases so that the order of the 



equation, describing the filtration of a gas in a fluidized bed with an accuracy up to the 

highest terms in the small parameter Ar*,is reduced. Actually, at distances which are remote 
fromthediscontinuity, we obtain Vp, + 6w - v = 0 from the first equation of (1.6), which 

corresponds to Darcy's law. 

Meanwhile, together with the simplification of the initial equation in the main bulk of 

the dense part of the layer, the need arises for a treatment close to the surface of dis- 

continuity of the transition layer (the analogue of a Prandtl boundary layer) in which the 

inertial term is substantial and occurs together with the term describing the interaction 

between the phases. The thickness A of the transition zone is of the order of the modified 

Archimedes' number in the region of the dense layer: A - Ar*. Similar inertial effects in the 
vicinity of boundary surfaces during slow filtration in porous media have been investigated 

previously in /4/. 

Using the second equality of (1.7) we shall write the equation of motion of the fluid 

phase in the region z< 0 in the form 

Ar* (v'V) v' = - of0 (~‘/(yp’)-~ + 1) Vpj + (yp)-l i, + o(6w’ - v’) (24 
All the terms in (2.2) are of the same order of maanitude: 0 (Ar*). Consequently, making 

allowance for the inertia of the gas in the region where there is a low concentration of 

disperse particles also implies that the term 0 (AT*) should be retained in the equation 

of motion of the fluid phase in the dense layer and that a boundary condition should be 

imposed on the jump in pressure of the gas on the discontinuity in the form [pf + I/, d,vz21 = 0. 
In the zeroth approximation with respect to the small parameter Ar*- hl-m, the pressure jumps 

are constrained by an analysis of Darcy's equation in the dense part of the layer bv putting 

pf = 0, [PiI = 0 on the surface of discontinuity /6/. 

Hence, the construction of the flow fields and the pressure distributions of the phases 

in a disperse system with a "strong" concentration discontinuity infers the inteqration of 
the initial Eqs.cl.6) both within the transition layer and outside of it with a subsequent 

matching of the solutions on the provisional boundaries of the transition region. Within 
the framework of a model which permits a continuous change in the concentration of the disperse 

phase in the transition layer from p' to P, the solutions obtained on matching must satisfy 

the requirement of the continuity of the parameters of a biphasal flow. When the thickness 
of the transition layer is neglected, these parameters will change abruptly on crossing the 

surface of discontinuity. 

The modified Froude number Fr* - 1 in the equations of motion of the solid phase in 

(1.6). Actually, numerous experiments and theoretical estimates show that during the motion 

of bubbles and gaseous plugs, for example, their velocity of ascent in the pseudofluidized 
layer is U, - (gl)":. It is important to emphasize that, according to Eqs.(l.8), the ratio of 

the magnitude of the inertial term in the solid phase to the force due to the interaction 

between the phases is independent of the concentration of particles in the layer, i.e. 

Fr*/Fr*' - 1 always. We shall also assume that the similarity numbers P.and p, are of the 

order or unity. 

3. Motion of the phases in the transition layer. As in boundary layer theory, 

we shallassume that the velocity fields and the pressure distributions of the phases outside 

the transition region are known from the solution of the corresponding problem on the motion 

of two-phase flow with a concentration discontinuity. 

Let us now introduce the new dimensionless coordinates T, 6 and n in the transition 

layer region using the formulae 

q = I, 6 = y, n = AT*-'z(q, 6, n - 1) (3.1) 

where n and 6 are tangential coordinates and n is an elongated normal to the boundary of the 

coordinate. In accordance with (1.6) ~ it is advisable to choose the maqnitude of the pressure 

difference on the discontinuity [piI - d,vo2 as the scale of pressure of the fluid phase in the 
transition layer (the other scales remain the same as in the derivation of Eq~~(l.66). 

By writing the dimensionless initial Eqs.(l.l) (ai& = 0) in the variables (3.1) and 

comparing theorders of the terms, we arrive at the followinq system of equations of motion 
and phase continuity in the transition layer: 

av r 
v,,O 4 = or2 0 @“, p) (6w,” - VrO) (3.2) 

V”O + = - .$& + (T (p”, p) (SwnO - vnO) 

o aw,= 

( 

9 
w*l aa= 0, --& Fr* + + P,"p," =O 

! 

& ('O"nC))=O, -&Tu.J = 0 
ll-+CC 

If = P” (P, P') = 
PI 

c (P"! P) = 
1, II--rm 

P,, n--tO' 0 (Ar*), ?z -YO 



Here vzO and tvrc are the components of the velocities of the phases which are tanqential 

to the discontinuity (see (1.311, p"(p,p') is a certain function of its arguments, possessing 
the above-mentioned properties (essentially, it is the equation of state of the solid phase in 
the transition layer), The flow parameters in the region of the transition layer in (3.2) and, 

subsequently, everywhere are labelled with the superscript '. 
We write the conditions for the asymptotic matching of the solution of system (3.2) to 

the solution outside the transition layer in the form 

n-m, A”(r,6,,,)~A(rt,b,O)=!i~A((“,y,z) (3.3) 

fZ -0, A” (11, 6,~) -i- A’ (q, 6, 0) = ii; A (5, y, z) 

where the symbol A denotes any of the three quantities: v,, vr, pi. In the last case 1‘4 (97 *, 
0) ( = Co by virtue of the fact that we have d, pgl.'(d,u,') = o(.kr*-I)> 1 for the ratio of the 

magnitudes of the scales of the fluid phase pressure in the dense layer and the transition 

region. 
Let us now consider a number of special cases in which system (3.2) is simplified. 
lo. Filtration in a homogeneOuS porous body (w~o,p' = COnSt = p, U(pO, Q) = 1). The 

transition layer Eqs.(3.2) take the form /4/ 

(3.4) 

Integration of system (3.4) yields 

(3.Q 

The unknown functions f(q, fi),g)(q,@ and Ifp(~j,*) must be determinedfromthematchingconditions 

(3.3). It is obvious that f(q,B) = u,(q, b, 0). We note that, on segments of the transition 

layer surface when f(q, *)>O, the fluid floes into the reaion of the dense layer. On the 
other hand, when f(q, a)< 0, on a part of the surface of discontinuity the fluid flows out 

of the region of the dense layer into the rarified region. 

In the model of the discontinuity being discussed it is not possible to satisfy condition 

(3.3) forthe,normal component of the velocity of the fluid phase as n-+0. In this case, there 

will be a jump in the normal component of the velocity equal to 

0,' trl, 6, 0) - l'n (n, 6, n) = f (n, 6) (a/e' - 1) 

on the boundary of the transition layex with the region containing a low concentration of 

particles. 
The correspondinq jump in the pressure of the fluidizing agent on the boundary n=O 

is equal to [p,) = - ['i,u,"j. The latter condition determines the function rp (11, 6) in the form 

'p (11, 6) = '1, fZ (V, fl) (E*:‘E” - 1) +- Pi’ (rl, 6, 0) 

It follows from the second condition of (3.5) that, if f(q, 6) >0 (f< 0), the gradient 

of the pressure in the transition layer is negative (positive) which corresponds to a fall 

(increase) in the pressure when the gas flows into the dense layer (when the gas flows out of 

the region of the dense layer). 

It follows from the third equation of (3.5) and the matching conditions 13.3) that, by 

virtue of the strong constraints imposed on system (3.2) within the framework of the assumed 

model, the distribution of the tanqential velocity of the gas on seqments where it flows in 

cannot be continuously matched to both the distributions v,(r), 6, 0) and VT' (n, ??, 0) outside 

of the transition region. Since, when this is so, ~~"(11, 6, n)+ m (n+ m), f (q, 6)< 0 which 

is physically unreal, a transition region is not formed on segments where there is a flow out 

of the fluidizing agent from the dense of the layer (cf. /4/j. 

20. Discontinuity in the ccmcentratjon of the disperse phase in a pseudoifluidized layer. 

Let us now consider a disperse system of more complex form, a pseudofluidized layer (wf0). 

Let us suppose that the surface of discontinuity is impermeable to the solid particles, i.e. 

En - u?l ' = 0, z = 0. For example, the boundary between a fluidized bed and a region filled 

with the pure fluidizing aqent constitutes a discontinuity of this type. As in the previous 

model, let I)‘ = const = p (0 (p,", p) : 1). When p0 = const, it follows from the penultimate 

equation of system (3.2) that Blc-,,'/&z = 0, whence I(',,0 (n, 8) -7 II',, (11. 6, 0) ze iim,_+o Lcz (x, y, 2) -2 0 

according to the condition. Hence, ' == (1'7, 0 in the transition region. 

Eqs.(3.2) take the form 

(3.6) 
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(ws” = WT”A, 6, n) is an arbitrary function). 
The integration of the second and fifth equations of (3.6) has been considered above in 

Sect.1. 

P8 o = pa0 01, 6) .= ps (q, 6, 0) = limz-.4.5 (5, Y, 2) 

follows from the fourth eq.uation of (3.6), i.e. the pressure distribution of the solid phase 
in the region of the dense layer is continuous up to the boundary n = 0. 

The jump in the pressure p., which is determined by the overallsystem ofboundaryconditions 
(1.3) is concentrated on this boundary. In the case of the known solutions (/6, 7, lo/, for 
example) for a fixed form of discontinuity and under the assumption that the flow fields and 
the pressures of the phases are stationary, the boundary condition for the pressure in the 
disperse phase cannot be satisfied on the whole of the surface of discontinuity but only 
locally in the neighbourhood of some of its points. This enables one to estimate the value 
of the velocity IJ,,i.e. the quantity which occurs in the equations of the parameter 6. 

The solution of the first equation of (3.6) is representable in the form 

(3.7) 

Here and everywhere subsequently the plus sign denotes parameters on seqments where the 
fluid phase flows in (f>O), while the minus sign denotes segments where the fluid phase flows 
out of the dense layer (f<O) 

Unlike the model in Sect.lO, the distribution of vro in (3.7) now depends on two arbitrary 
functions: f$t(n, 6) and x*(q, 6, n), which enables one to join this distribution to the solutions 

VT. and vr’ outside of the transition layer. 
The behaviour of the function I*(n.B,n) as n-+0, 00 is determined by certain limiting 

and differential properties of the distribution of the tangential component of the velocity 
of the solid phase in the transition layer region. Let us assume, for example, that the 
functions X*((rl,@,n) as n-+0 are representable in the form of power series which are 
uniformly convergent with respect to ?l and 6, i.e. they are analytical close to the plane 
n = 0. In this case 

Assuming that the functions X*(t), I?,.) have a limit uniformly with respect to n and 6 
as n--t + 00 and are representable by convergent asymptotic series, we obtain 

(3.9) 

We find on the basis of expressions (3.8) and (3.9) and from the matching conditions (3.3) 
that, in the case of the functions cp*(n,@),X* (n,@,n), the relationships 

f (9.6) > 0, a0+ PI,, fV = vT’ (11, 6, Q, (3.10) 

q+ (7, Q) = Vt’ (%fi, 0) - X’ (% q 
f (II, 6) < 0, ao- (rl, 6) = vt- (n@, 0) 

‘p- (q, 6) = 0, ,‘;- (q, 6) = v7’ (% f+,O) 

must be satisfied on segments into and out of which the fluid flows respectively and the series 
are assumed to be uniformly converqent with respect to n and 6. 

It follows from formulae (3.10) thatthe need to satisfy the conditions for the asymptotic 
matching of the tangential components of the velocity of the fluidizinq agent on the boundaries 
of the transition layer region when the gas flows out of the dense layer (f<O) imposes more 
rigorous constraints on the function X*(n,ti,n) describinq the distribution of the tangential 
velocity of the solid phase in the transition layer, than in the case of segments into which 
there is a flow of gas where it is only required that 

lim x+(n, +,l~j = vX+(Tj, 6, 0) 
Il--r.(c 
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AS an example, let us consider a simple model distribution of the tangential velocity of 
the disperse phase in the transition layer x = 6~~" in the form 

We shall have 

(3.11) 

on seqments into which and out of which the gas flows respectively subject to the condition 
jf(tl.t$) I< I uniformly with respect to n and d (we recall that f(n,6) is the dimensionless 
normal component of the velocity of the fluid phase in the region of the dense layer, i.e. 
Ii (11. 6) I - 11. In relationships (3.11) , A,*(+(ll, 6) = v,* (q, 9, 0) - vt’ (q, it, 01 is the jump in the 
tangential component of the velocity of the gas on passing across the discontinuity. 

We note that the function X+(q,$,n) in accordance with (3.11) is uniquely determined by 
the matching conditions on segments where there is an outflow of fluid while b**(r),*.) is, 
generally speakinq, arbitrary on segments where there is an inflow of fluid. If it is required 
that the tangential component of the velocity of the solid phase should be continuous on the 
boundary n= 0 (this requirement is additional and it does not follow that it is necessary 
from the boundary conditions (1.3) since, when w,/,+ = ~~'j~.__+= 0. the jump in wvT on the 
discontinuity can be arbitrary), we obtain 

It is known 
fluidized layer, 

$E,% whence it 

g- (ij. 8) = SW; (q, 6, 0) -an+ (‘1, 6) = sw~ (I], 8,O) - v,+ (?), 6, 0) 

/5/ that, in the problem of the motion of a spherical bubble in a pseudo- 
the velocity fields outside the bubble possess the property vt(n,6,0)= 6w,(q, 
follows that 

i.e. the continuity of the tangential velocity of the solid phase on the boundary IZ= + 00 of 
the transition region with the dense layer (which is obviously valid both for segments into 
which there is an inflow as well as for segments out of which a flow occurs). 

An important difference between the models considered in Sects.10 and 2O is that, in the 
case of an immobile disperse phase, the flow behind the rear edge of the inhomogeneity (i(O) 
propagates without the formation of a transition layer /4/. As was noted above, the constraints 
of the model do not enable one to continuously match the distributions VT (X,&Z), vrO (11, 6, n), 
Yr' (z, Y. 2) on the boundaries of the transition layer (i > 0). 

In the model with a mobile disperse phase, a transition layer is formed on the surface 
of discontinuity regardless of the direction in which the discontinuity intersects the flow 
of the fluid phase. In the zeroth approximation with respect to the thickness of the transition 
layer, the condition of continuity of the tangential component of the velocity of the fluid 
phase upon intersecting the discontinuity is not necessary along the whole of its surface. 

30 . Discontinuity in the pseudofluidized layer with a continuous concentration dis- 

tribution of the disperse phase in the transition region. In the model being considered, the 
system of transition layer equations has the form 

P" =P"(P? P') = i 
P? I) -> -i- M 
P', )1 _,O 

where 6w,' (Q, 6, IL) am x (n, 6, n isanarbitraryfunction (aspreviously,weconsiderdiscontinuities ) 
which are impermeable to the particles). 

The introduction of a continuous concentration distribution in the transition layer which, 
in the inteqration of system (3.12), provides additional arbitrariness in the form of a certain 
function P" with the above-mentioned properties as II-+-O,+ 00, enables one to obtain a pressure 
distribution and a distribution of the normal component of the velocity of the fluidizing 
aqent which are continuous on the boundaries of the transition region. In particular, in the 
latter case I:,~~ = f (q, 8)/E”, where i(rl, 6) L= EU,(I~, 6, 0) = E'u,' (11, 6, 0) in accordance with the 
matching conditions (3.3) and the first condition (1.3). It is assumed that the function 

P0 (rl, Q, $3) and the functions $, s(P",p) associated wi.th it satisfy the additional constraints 
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imposed on them during the construction of the distribution of v, and p, which are continuous 

"when account is taken" of the transition layer. 

In the case of the velocity component of the gas which is tanqential to the discontinuity, 

we obtain 

n 

EhB,n) ‘Y I* h 6,n) = m s E-‘(q, 6, n’) x* (q, 6, n’) drz’ 
--m, 1>0 
3-m. f<O 

which becomes relationship (3.7) when (J (P", P) = 1. 
Let us assume that the limits 

exist. 

I,* <q, G)= lim I* (q,~Y,a), IO* (q, th)= lim I* (q.6,~~) (3.13) 
n-+oC n-0 

By virtue of the arbitrariness of the function X*(VJ, 6, n) = &v,"(q, 6, n) for impermeable 

discontinuities, the requirements of (3.13) are exceedingly general which enables one to 

construct a distribution of vz. which is continuous over the whole of the flow region if the 

solution outside of the transition layer is known. At the same time, it follows from the 
matching conditions (3.3) that 

Let us estimate the dimensionless thickness & of the transition layer on-the discontinuity. 
It follows from relationships (2.1) that A-.4r* -~.l-n‘. It is obvious from this that it is 
possible to choose the quantities n~~(0,l) and h in order that the thickness of the transition 
layer will be sufficiently large (Aiz-Ah-l") with respect to the distance between the phases, 
Alv., x-h, so that the condition for the applicability of the continuum approach to the 
description of the flow in the transition layer will be complied with and, at the same time, 

sufficiently small compared with the size of the macroinhomogeneity (packet, bubble). The 
latter fact enables one to neglect the presence of a transition region in describinq the flow 
from the discontinuity. 

In the zeroth approximation with respect to the thickness of the transition layer, the 

system of boundam conditions (1.3) must be changed. In particular, on a "strong" discontinuitv 
which is impermeable to the disperse phase (p>p'), the tangential component of the velocity 
of the fluidizing acent may experience an arbitrary jump even in the case of a non-zero flux of 

gas through the surface of discontinuity (v,,# 0). Then change in the parameters 

P, = p, + 'I, 1),9 
P!> L‘,,. VT; 

on intersecting the discontinuity is shown schematicallyinFig.1 for two cases: 
taking account of the transi.tion layer and under the assumption that there is an infinitely thin 

transition zone. 

The modified system of boundary conditions on a discontinuity of the type being considered 

in the approximation A = 0 has the form 

[Ed = 0, w, = 0, wz’ = 0, [PHI = - l/s& [uz2] (3.14) 

[pr + ps + d,""z*l= 0 

In the model of a small but finite inertia, it follows that 

the changeinthe dynamic pressure of the fluid phase on 

-z- 
traversing the discontinuity should be taken into account in 

the construction of the flow field of the oas in the reaion 

s a low concentration of 

In the model of an inertialess 

it is approximately assumed /5, 8/ that 

Fiq.1 
[FV,] = 0, w, = 0, pf = const, 

pz = const, PZ = Pr + P.< 
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on the boundary of the layer with the region filled with the pure gas. 
Within the framework of this model, information concerning the flow pattern of the fluid 

phase outside the dense layer is, generally speaking, lost. 

4. Motion of a bubble in a pseudofluidized layer. On the basis of the results 
which have been obtained we shall consider the model problem of the quasistationary motion, 
in a pseudofluidized layer, which is constant with respect to the shape and dimensions of the 
spherical cavity which is free from solid particles (/6-8/,/12/, et al.). The physical 
formulation of the problem of finding the flow fields of the fluidizing agent and the disperse 
phase in the neighbourhood of a bubble involves the initial equations (1.1) (a/at = 0) with 
the assumption that the interaction between the phases is linear (see (1.2), (l.S)), the 
boundary conditions (3.14) which must be satisfied on the spherical surface of the bubble which 
is a surface of discontinuity in the concentration of the particles of the type considered 
above, and also the conditions for the uniformity of thegasand particle flows at large distances 
for the inhomogeneity. 

use ismadeof a spherical coordinate system (r,@, tp) associatedwiththecentre of the bubble, 
the polar axis of which is parallel to the external mass force vector. 

Within the framework of the assumed model the problem of the motion of the phases can be 
solved without the use of a boundary condition for the pressure ofthedisperse phase on the 
surface of the bubble. We note that representations concerning the physical nature of the 
pressure of a pseudogas of particles and also concerning phenomena which are analogous to 
surface tension in liquids cannot be considered as having been formulated in the case of pseudo- 
fluidized system at the present time. The correct formulation of the condition for the balance 
of the total normal stresses in a disperse system (which has been written in (3.14) in a 
simplified form) jnvolves serious difficulties and requires additional investiqation. 

BY applying the curl operator to the initial equations we arrive at the following 
relationship for the dimensionless flow functions of the fluid and solid phases ($=$/~~,a~, a 
is the rad_ius of the bubble, I: = r/a, the dashes are subsequently omitted) which, outside the 
bubble, satisfy the condition for the homogeneity of the flows of the phases at infinity (V, 
is the velocity of levitation of the bubble) 

r > 1, 9, = (Mr-1 + (6 - 1) P/2) sinSO, qS = 
(Gr-” +- 6rz/2) sin* I3 

r( 1, qr = (A + Cr2) t2 sin2 0, S = V,/U, 

(4.1) 

b a 

Fig.2 Fig.3 

With the help of the boundary conditions (3.141, we obtain the following algebraic system 
for determining the unknown coefficients M, G, A and c: 

E (2M i_ 6 - I) = 2 (A + Cl, G -t- 612 = 0 (4.2) 
&f - G + 1 = 0, (M - 6 + ‘i)’ = 4 (.‘i2 - AC - Ci) 

and, by solving these, we find 

G = - 612, M = - (612 + 1) (4.3) 

The two different sets of cooffLcients A and C in the solution correspond to the two real 
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roots of the last equation in (4.3) which has the form 

(9b - 5) (X + I)2 = 4 (X2 - X - I), X = A/C 

The plus sign corresponds to the first root (X = X,, 1 X, / >I) and the minus sign in the 

expressions forthe coefficients A,,, and Lz corresponds to the second root (X = X,, 

IX, l<i) - 
We emphasize that, in accordance with formulae (4.1) and (4.2), the flow pattern of the 

phase outside the bubble is identical to that found in the Davidson model /6/. The only 

difference between the results which are discussed below and those obtained in /6/ concerns 

the nature of the flow of the fluidizing agent in the region r< 1 within the bubble. 

We now consider the possibility of forming closed stream lines of the fluid phase within 

the bubble. It follows from the third equality of (4.1) that, in order for this to happen, 

the condition A,,, i C1,2rz = 0 must be satisfied. When allowance is made for relationships 

(4.3). the latter equation leads to the following expression for the dimensionless radius of 

the spherical boundary of the cloud within the bubble: 

It is obvious that a cloud with circulating gas can only exist in the region beina 

considered in the case when a,' = &I', / (7,1’ 1 <I. The second solution yields the dependence 
--I 
% = cc2 9 - ’ 1 tic2 1 ; 1 which physically means that there are no closed flows of the fluidizing 

agent which form a spherical cloud within the packet. We note that the possibility of a 

spherical cloud of closed circulation, similar to a Hill vortex, arising within bubbles is 

indirectly confirmed, for example, by experimental data from a study of the mass exchange of 

bubbles in a pseudofluidized layer /13/ (also see /6/J. As the magnitude of the parameter 

b increases, the cloud rapidly increases in size and occupies practically the whole of the 

interior of the bubble. 

The region of closed circulation of the gas in a bubble when b z 2.33 (E = 0.5, 6 = 2, Cc’ = 
0.858) is shown schematically in Fig.2. At the same time, the cloud (ii, = ((6 + 2)/(6 - I))“8 2‘. 
1.58) also exists outside the bubble. 

The change in the pattern of the flow lines within the bubble which corresponds to the 

second solution of (4.3), is schematically represented in Fig.3, a, b. In this case, the 

interior of the bubble is circulating when 6/,,< b < 2519. In the case of rapidly rising 

bubbles (b>25/9, Fig.3, b) conditions are realized for the creation of a toroidal-shaped 

annular vortex within the cavity which covers the bubble along its equator. The relationship 
d, 1 1 - (2/J/. (l/b - I)-?'2 holds for the mean diameter of the vortex. The size of the vortex 

like the size of the spherical cloud, has a tendency to increase as the velocity of levitation 
of the bubble increases. 

Hence, the model employed in this paper for the flow field of a fluid within a bubble 

allows two solutions of the initial system of Eqs.tl.1) with boundary conditions (3.14) which 

correspond to two different patterns of flow lines of the fluid phase when ?.<I. The first 

solution corresponds to the occurrence within the bubble of a spherical cloud of the fluid 

phase, the dimensions of which are determined by the size of the bubble and the properties 
of the disperse system. The second solution is characterized by the circulationofthe slowly 

levitating bubbles and by the formation within them of a nre-equatorial annular vortex in the 

case when the levitation velocity is fairly larqe. This solution is similar to a known extent 

to the solution in /14/ which was obtained, however, within the framework of the Davidson 

model without taking account of the jump in the pressure of the fluidizing acent on the boundary 

of the bubble and with the improper use of the condition for the continuity of the tangential 

component of the velocity of the gas on this boundary. 

The analysis presented above was carried out without the assumption made by Davidson 

concerning the constancy of the gas pressure within the bubble, and takes into account the 

inertia of the fluid phase and the jump in its dynamic pressure on crossina the surface of the 
bubble. Within the framework of the adopted model, the question as to which of the two 
solutions which have been found is preferable remains open. In reality, both of the above- 
mentioned possibilities can obviously be realized. Verification of the adequacy of the results 
which have been obtained requires more refined experiments with the aim of studying the flow 

pattern of the fluidizing agent within the bubbles in pseudofluidized systems. 

The authors thank M.A. Gol'dshtik for useful remarks and advice. 
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CALCULATION 
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OF THE FORCE AND MOMENT OF FORCES ACTING ON A DROP IN AN 
ARBITRARY NON-STEADY FLOW OF A VISCOUS FLUID* 

N.V. PARSHIKOVA 

The Oseen point force method /l-3/ which differs from the methods used 

earlier in similar problems, is used to obtain formulas for the force 

and moment of forces acting on a spherical drop in an inhomogeneous non- 
steady flow of viscous incompressible fluid. In special cases the results 

can be reduced to well-known results. 

Earlier, the non-steady motion of a rigid particle in an inhomo- 
geneous non-steady flow was considered in /4, 5/, its rotation in /6. 7/. 

the conditions of slippage at the surface in /5, 7/, and the effect of 

the specified external forces in /8, 9/. The corresponding stationax- 

problem was studied in /lO, ll/ and the non-steady motion of a drop in 

uniform non-steady flow in /12-14/. 

1. Formulation of the problem. A liquid sohere of viscosity p',density p and 

constant radius a, moves with velocity u(t) through an incompressible medium of viscositv 

IL and d$nsity p. The problem is studied in the Stokes approximation, i.e. we consider the 

following linear, non-steady equationsofmotion of the fluid outside and inside the drop: 

*Prikl.?fatem./dekllan.,50,5,772-779,1986 


